• My Basket 0

    Badrilla Default welcome msg!

    Back

    β-adrenergic stimulation

    Please rate these pages to support our infographic project:

     

    References

     

    1. Bartel, S. et al. 2003. New insights into beta(2)-adrenoceptor signaling in the adult rat heart. Cardiovascular Research. 57(3), pp.694-703.
    2. Bovo, E. et al. 2012. Reactive oxygen species contribute to the development of arrhythmogenic Ca(2)(+) waves during beta-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol. 590(Pt 14), pp.3291-304.
    3. Brennan, J.P. et al. 2006. Oxidant-induced activation of type I protein kinase a is mediated by RI subunit interprotein disulfide bond formation. Journal of Biological Chemistry. 281(31), pp.21827-21836.
    4. Brette, F. et al. 2004. beta-adrenergic stimulation restores the Ca transient of ventricular myocytes lacking t-tubules. J Mol Cell Cardiol. 36(2), pp.265-75.
    5. Briston, S.J. et al. 2011. Impaired beta-adrenergic responsiveness accentuates dysfunctional excitation-contraction coupling in an ovine model of tachypacing-induced heart failure. Journal of Physiology-London. 589(6), pp.1367-1382.
    6. Calaghan, S. et al. 2008. Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. Journal of Molecular and Cellular Cardiology. 45(1), pp.88-92.
    7. Calaghan, S.C. et al. 1998. Co-ordinated changes in cAMP, phosphorylated phospholamban, Ca2+ and contraction following beta-adrenergic stimulation of rat heart. Pflugers Archiv-European Journal of Physiology. 436(6), pp.948-956.
    8. De Arcangelis, V. et al. 2010. Equilibrium between Adenylyl Cyclase and Phosphodiesterase Patterns Adrenergic Agonist Dose-Dependent Spatiotemporal cAMP/Protein Kinase A Activities in Cardiomyocytes. Molecular Pharmacology. 78(3), pp.340-349.
    9. Freestone, N.S. et al. 1999. beta(4)-adrenoceptors are more effective than beta(1)-adrenoceptors in mediating arrhythmic Ca2+ transients in mouse ventricular myocytes. Naunyn-Schmiedebergs Archives of Pharmacology. 360(4), pp.445-456.
    10. Grimm, M. et al. 2007. Reduced contractile response to alpha1-adrenergic stimulation in atria from mice with chronic cardiac calmodulin kinase II inhibition. J Mol Cell Cardiol. 42(3), pp.643-52.
    11. Kaasik, A. et al. 2001. Decreased expression of phospholamban is not associated with lower beta-adrenergic activation in rat atria. Mol Cell Biochem. 223(1-2), pp.109-15.
    12. Kaumann, A. et al. 1999. Activation of beta(2)-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I, and C-protein in ventricular myocardium from patients with terminal heart failure. Circulation. 99(1), pp.65-72.
    13. Kaumann, A.J. and Molenaar, P. 1997. Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn-Schmiedebergs Archives of Pharmacology. 355(6), pp.667-681.
    14. Kuschel, M. et al. 1999a. Ser(16) prevails over Thr(17) phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. American Journal of Physiology-Heart and Circulatory Physiology. 276(5), pp.H1625-H1633.
    15. Kuschel, M. et al. 1999c. G(1) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. Journal of Biological Chemistry. 274(31), pp.22048-22052.
    16. Kuschel, M. et al. 1999d. beta(2)-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation. 99(18), pp.2458-2465.
    17. Li, Y. et al. 2006. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. Journal of Immunology. 177(11), pp.8234-8240.
    18. MacDonnell, S.M. et al. 2007. Calcineurin inhibition normalizes beta-adrenergic responsiveness in the spontaneously hypertensive rat. American Journal of Physiology-Heart and Circulatory Physiology. 293(5), pp.H3122-H3129.
    19. Macdougall, D.A. et al. 2012. Caveolae compartmentalise beta2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. J Mol Cell Cardiol. 52(2), pp.388-400.
    20. Manni, S. et al. 2008. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells. Journal of Biological Chemistry. 283(35), pp.24145-24154.
    21. Molenaar, P. et al. 2000. Both beta(2)- and beta(1)-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of fallot infants, consistent with selective coupling of beta(2)-adrenergic receptors to G(s)-protein. Circulation. 102(15), pp.1814-1821.
    22. Molenaar, P. et al. 2007. (-)-Adrenaline elicits positive inotropic, lusitropic, and biochemical effects through beta2 -adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn Schmiedebergs Arch Pharmacol. 375(1), pp.11-28.
    23. Neumann, J. et al. 2003. Altered signal transduction in cardiac ventricle overexpressing A(1)-adenosine receptors. Cardiovasc Res. 60(3), pp.529-37.
    24. Pugh, S.D. et al. 2014. Caveolin Contributes to the Modulation of Basal and beta-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect. Plos One. 9(9).
    25. Roof, S.R. et al. 2011. Effects of increased systolic Ca(2)(+) and phospholamban phosphorylation during beta-adrenergic stimulation on Ca(2)(+) transient kinetics in cardiac myocytes. Am J Physiol Heart Circ Physiol. 301(4), pp.H1570-8.
    26. Rossow, C.F. et al. 2009. NFATc3-dependent loss of I-to gradient across the left ventricular wall during chronic beta adrenergic stimulation. Journal of Molecular and Cellular Cardiology. 46(2), pp.249-256.
    27. Ruan, H.M. et al. 2007. Gi alpha 1-mediated cardiac electrophysiological remodeling and arrhythmia in hypertrophic cardiomyopathy. Circulation. 116(6), pp.596-605.
    28. Stangherlin, A. et al. 2011. cGMP Signals Modulate cAMP Levels in a Compartment-Specific Manner to Regulate Catecholamine-Dependent Signaling in Cardiac Myocytes. Circulation Research. 108(8), pp.929-U110.
    29. Stuenaes, J.T. et al. 2010. beta-Adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. British Journal of Pharmacology. 160(1), pp.116-129.
    30. Wu, Y.J. et al. 2009. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proceedings of the National Academy of Sciences of the United States of America. 106(14), pp.5972-5977.

     

     

     

     Back to main infographic.

    Contact Us

    Badrilla Ltd.

    15 Queen Square

    Leeds LS2 8AJ

    United Kingdom

     

    +44 (0)7801 730618

     

    info@badrilla.com

    Useful Links

    .

    DISCLAIMER: Products for research use only (RUO) and are not intended for diagnostic or therapeutic use.

    Badrilla Newsletters

    Sign up for Badrilla newsletters today and receive twice-monthly informative emails relating to cardiovascular research.
    Badrilla enewsletter sign up