• My Basket 0

    Badrilla Default welcome msg!

    Back

    Calcium handling - key publications using PLN antibodies

    Please rate these pages to support our infographic project:

     

    References

     

    1. Aoyama, H. et al. 2011a. Isoform-specific roles of protein phosphatase 1 catalytic subunits in sarcoplasmic reticulum-mediated Ca2+ cycling. Cardiovascular Research. 89(1), pp.79-88.
    2. Babick, A.P. et al. 2004. Cardiac contractile dysfunction in J2N-k cardiomyopathic hamsters is associated with impaired SR function and regulation. American Journal of Physiology-Cell Physiology. 287(5), pp.C1202-C1208.
    3. Baltas, L.G. et al. 1997. The endogenous cardiac sarcoplasmic reticulum Ca2+/calmodulin-dependent kinase is activated in response to β-adrenergic stimulation and becomes Ca2+-independent in intact beating hearts. FEBS Letters. 409(2), pp.131-136.
    4. Bartel, S. et al. 2000. Phosphorylation of phospholamban at threonine-17 in the absence and presence of beta-adrenergic stimulation in neonatal rat cardiomyocytes. Journal of Molecular and Cellular Cardiology. 32(12), pp.2173-2185.
    5. Bartholomeu, J.B. et al. 2008. Intracellular mechanisms of specific beta-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. Journal of Molecular and Cellular Cardiology. 45(2), pp.240-249.
    6. Bhogal, M.S. and Colyer, J. 1998a. Depletion of Ca2+ from the sarcoplasmic reticulum of cardiac muscle prompts phosphorylation of phospholamban to stimulate store refilling. Proceedings of the National Academy of Sciences of the United States of America. 95(4), pp.1484-1489.
    7. Bhogal, M.S. and Colyer, J. 1998b. Depletion of sarcoplasmic reticulum calcium prompts phosphorylation of phospholamban to stimulate store refilling. Cardiac Sarcoplasmic Reticulum Function and Regulation of Contractility. 853, pp.260-263.
    8. Brette, F. et al. 2000. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology. 279(4), pp.H1963-H1971.
    9. Brette, F. et al. 2004. beta-adrenergic stimulation restores the Ca transient of ventricular myocytes lacking t-tubules. J Mol Cell Cardiol. 36(2), pp.265-75.
    10. Bupha-Intr, T. et al. 2009. Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats. Journal of Applied Physiology. 107(4), pp.1105-1112.
    11. Bupha-Intr, T. and Wattanapermpool, J. 2006. Regulatory role of ovarian sex hormones in calcium uptake activity of cardiac sarcoplasmic reticulum. American Journal of Physiology-Heart and Circulatory Physiology. 291(3), pp.H1101-H1108.
    12. Catalucci, D. et al. 2009. At Increases Sarcoplasmic Reticulum Ca2+ Cycling by Direct Phosphorylation of Phospholamban at Thr(17). Journal of Biological Chemistry. 284(41), pp.28180-28187.
    13. Chase, A. et al. 2010. Localised Ca channel phosphorylation modulates the distribution of L-type Ca current in cardiac myocytes. Journal of Molecular and Cellular Cardiology. 49(1), pp.121-131.
    14. Chen, X.W. et al. 2011. Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology. 50(3), pp.460-470.
    15. Colyer, J. 1998. Phosphorylation states of phospholamban. Cardiac Sarcoplasmic Reticulum Function and Regulation of Contractility. 853, pp.79-91.
    16. Denipote, F. et al. 2011. Influence of Taurine on Cardiac Remodeling Induced by Tobacco Smoke Exposure. Cellular Physiology and Biochemistry. 27(3-4), pp.291-298.
    17. El-Armouche, A. et al. 2011. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. Faseb Journal. 25(12), pp.4467-4475.
    18. Grimm, M. et al. 2007. Reduced contractile response to alpha1-adrenergic stimulation in atria from mice with chronic cardiac calmodulin kinase II inhibition. J Mol Cell Cardiol. 42(3), pp.643-52.
    19. Guinto, P.J. et al. 2009. Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol. 297(2), pp.H614-26.
    20. Huke, S. et al. 2011. SR-targeted CaMKII inhibition improves SR Ca2+ handling, but accelerates cardiac remodeling in mice overexpressing CaMKII delta(C). Journal of Molecular and Cellular Cardiology. 50(1), pp.230-238.
    21. Hussain, M. et al. 1999. Effects of the protein kinase A inhibitor H-89 on Ca2+ regulation in isolated ferret ventricular myocytes. Pflugers Archiv-European Journal of Physiology. 437(4), pp.529-537.
    22. Jackson, W.A. and Colyer, J. 1996. Translation of Ser16 and Thr17 phosphorylation of phospholamban into Ca 2+-pump stimulation. Biochem J. 316 ( Pt 1), pp.201-7.
    23. Kalyanasundaram, A. et al. 2012. Functional consequences of stably expressing a mutant calsequestrin (CASQ2(D307H)) in the CASQ2 null background. American Journal of Physiology-Heart and Circulatory Physiology. 302(1), pp.H253-H261.
    24. Kiper, C. et al. 2010. Rem-GTPase Regulates Cardiac Myocyte L-type Calcium Current. Circulation. 122(21).
    25. Kirchhefer, U. et al. 2007. Triadin is a critical determinant of cellular Ca cycling and contractility in the heart. American Journal of Physiology-Heart and Circulatory Physiology. 293(5), pp.H3165-H3174.
    26. Kreuzberg, U. et al. 2000. Single-channel activity and expression of atrial L-type Ca(2+) channels in patients with latent hyperthyroidism. Am J Physiol Heart Circ Physiol. 278(3), pp.H723-30.
    27. Lester, W.C. et al. 2008. Steady-state coupling of plasma membrane calcium entry to extrusion revealed by novel L-type calcium channel block. Cell Calcium. 44(4), pp.353-362.
    28. Lorenz, M. et al. 2008. Positive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. European Journal of Heart Failure. 10(5), pp.439-445.
    29. Lu, Y.Y. et al. 2011. Extracellular Matrix of Collagen Modulates Intracellular Calcium Handling and Electrophysiological Characteristics of HL-1 Cardiomyocytes With Activation of Angiotensin II Type 1 Receptor. Journal of Cardiac Failure. 17(1), pp.82-90.
    30. Maiellaro-Rafferty, K. et al. 2013. Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology. 60, pp.151-160.
    31. Manni, S. et al. 2008. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells. Journal of Biological Chemistry. 283(35), pp.24145-24154.
    32. Michael, A. et al. 2004. Glycogen synthase kinase-3 beta regulates growth, calcium homeostasis, and diastolic function in the heart. Journal of Biological Chemistry. 279(20), pp.21383-21393.
    33. Mishra, S. et al. 2005. Reduced sarcoplasmic reticulum Ca2+ uptake and increased Na+-Ca2+ exchanger expression in left ventricle myocardium of dogs with progression of heart failure. Heart and Vessels. 20(1), pp.23-32.
    34. Moorman, A.F. et al. 2000. Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol. 223(2), pp.279-90.
    35. Most, P. et al. 2001. S100A1: A novel regulator of myocardial contractility. Circulation. 104(17), pp.51-51.
    36. Oestreich, E.A. et al. 2009. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem. 284(3), pp.1514-22.
    37. Park, C.S. et al. 2012. AAV-Mediated Knock-Down of HRC Exacerbates Transverse Aorta Constriction-Induced Heart Failure. Plos One. 7(8).
    38. Park, C.S. et al. 2013. Targeted ablation of the histidine-rich Ca(2+)-binding protein (HRC) gene is associated with abnormal SR Ca(2+)-cycling and severe pathology under pressure-overload stress. Basic Res Cardiol. 108(3), p344.
    39. Prasad, V. et al. 2008. Impaired Cardiac Contractility in Mice Lacking Both the AE3 Cl-/HCO3- Exchanger and the NKCC1 Na+-K+-2Cl(-) Cotransporter EFFECTS ON Ca2+ HANDLING AND PROTEIN PHOSPHATASES. Journal of Biological Chemistry. 283(46), pp.31303-31314.
    40. Quaile, M.P. et al. 2007. Reduced sarcoplasmic reticulum Ca2+ load mediates impaired contractile reserve in right ventricular pressure overload. Journal of Molecular and Cellular Cardiology. 43(5), pp.552-563.
    41. Razani, B. et al. 2011. Fatty Acid Synthase Modulates Homeostatic Responses to Myocardial Stress. Journal of Biological Chemistry. 286(35), pp.30949-30961.
    42. Rodriguez, P. et al. 2004. Critical evaluation of cardiac Ca2+-ATPase phosphorylation on serine 38 using a phosphorylation site-specific antibody. Journal of Biological Chemistry. 279(17), pp.17111-17119.
    43. Roof, S.R. et al. 2011. Effects of increased systolic Ca(2)(+) and phospholamban phosphorylation during beta-adrenergic stimulation on Ca(2)(+) transient kinetics in cardiac myocytes. Am J Physiol Heart Circ Physiol. 301(4), pp.H1570-8.
    44. Ruiz-Hurtado, G. et al. 2012b. Cardiotrophin-1 induces sarcoplasmic reticulum Ca(2+) leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res. 96(1), pp.81-9.
    45. Schaeffer, P.J. et al. 2009. Impaired contractile function and calcium handling in hearts of cardiac-specific calcineurin b1-deficient mice. American Journal of Physiology-Heart and Circulatory Physiology. 297(4), pp.H1263-H1273.
    46. Song, L.S. et al. 2005. Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circulation Research. 97(5), pp.457-464.
    47. Thireau, J. et al. 2012. Functional evidence for an active role of B-type natriuretic peptide in cardiac remodelling and pro-arrhythmogenicity. Cardiovascular Research. 95(1), pp.59-68.
    48. Tsao, H.M. et al. 2012. Amyloid peptide regulates calcium homoeostasis and arrhythmogenesis in pulmonary vein cardiomyocytes. European Journal of Clinical Investigation. 42(6), pp.589-598.
    49. Valverde, C.A. et al. 2006. Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart. Cardiovascular Research. 70(2), pp.335-345.
    50. van Oort, R.J. et al. 2011. Disrupted Junctional Membrane Complexes and Hyperactive Ryanodine Receptors After Acute Junctophilin Knockdown in Mice. Circulation. 123(9), pp.979-U123.
    51. Vanzelli, A.S. et al. 2013. Integrative Effect of Carvedilol and Aerobic Exercise Training Therapies on Improving Cardiac Contractility and Remodeling in Heart Failure Mice. Plos One. 8(5).
    52. Vinogradova, T.M. et al. 2008. Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circulation Research. 102(7), pp.761-769.
    53. Wang, H. et al. 2008. Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. American Journal of Physiology-Cell Physiology. 294(6), pp.C1566-C1575.
    54. Williams, I.A. and Allen, D.G. 2007. Intracellular calcium handling in ventricular myocytes from mdx mice. American Journal of Physiology-Heart and Circulatory Physiology. 292(2), pp.H846-H855.
    55. Yaniv, Y. et al. 2012. Crosstalk between Mitochondrial and Sarcoplasmic Reticulum Ca2+ Cycling Modulates Cardiac Pacemaker Cell Automaticity. Plos One. 7(5).
    56. Zinman, T. et al. 2006. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. Journal of Cellular Physiology. 207(1), pp.220-231.

     

    Back to main infographic.

    Contact Us

    Badrilla Ltd.

    15 Queen Square

    Leeds LS2 8AJ

    United Kingdom

     

    +44 (0)7801 730618

     

    info@badrilla.com

    Useful Links

    .

    DISCLAIMER: Products for research use only (RUO) and are not intended for diagnostic or therapeutic use.

    Badrilla Newsletters

    Sign up for Badrilla newsletters today and receive twice-monthly informative emails relating to cardiovascular research.
    Badrilla enewsletter sign up